
Soil Testing and Fertilizing

With High Fertilizer Prices

Gerald Bryan
Extension Agronomist
UM Extension
Jackson, MO
573-243-3581

What Nutrients Do Plants Require?

- Macro-nutrients N, P, K, Ca, Mg, S
 - Needed in greatest quantities
 - N, P, K likely to show economic responses
- Micro-nutrients B, Fe, Cu, I, Mn, Mo,
 Zn, Cl, Na, Co, Si
 - Unlikely to show economic responses unless severely deficient
- Soil pH not a nutrient, but regulates the availability of nutrients to plants
- Air and Water,

Determining Fertilizer Needs

- Determine nutrients in Soil
- Yield Replace the nutrients removed
- Soil Capability and Nutrient Buildup
- Crop and System- No till or irrigated
- Hay or Grazing System/ manure recycling

Why Soil Test

- Meet plant needs
- Optimize production
- Use fertilizer \$\$\$\$ effectively
- Reduce potential pollution to water
- Reduce fertility effects on livestock and crops
- Improve quality of forage and crops
- Maintain and improve soil fertility

Soil Sampling

- Each test should represent 20 acres or less
- Avoid sampling near limestone roads, feeding areas, water tanks, loafing areas, ditches, fresh manure piles, etc.
- Take 15 to 20 cores at random locations in the paddock. A zig-zag or "M" pattern works well.
- Take cores to a 6 inch depth or hit rock

University **Extension**

Report

Soil Testing Laboratory 23 Mumford Hall, MU Columbia, MO 65211 Phone: (573) 882-0623

Soil Testing Laboratory P.O. Box 160 Portageville, MO 63873 Phone: (573)379-5431

University of Missouri-Columbia

FIELD INFORMATION								
Field ID ADAMS FIELD Sample no 1								
Acres 35	Last Limed	>5 yrs		Irri	gated	No		
Last crop 18 COOL SEASON GRASS HAY FSA Copy N								

Soil Test

http://www.soiltest.psu.missouri.edu/

Serial no. S14964-1 Lab no. D0804005 Region 7 County Iron Submitted Processed 4/4/2008 3/19/2008

Soil sample submitted by: Firm Number: Outlet:

This report is for:

DARRELL MILLER RT 1, BOX 165 ANNAPOLIS MO 63620

0011 7							R	ATING			
SOIL TEST INFORMATION			Very Low	Low	N	ledium	Н	ligh	Very High	Excess	
pH _s	(salt pH)	6.7		*****	******						
Phosphorus	(P)	7	lbs/A	*****							
Potassium	(K)	174	lbs/A	*****	*****	****	****	***			
Calcium	(Ca)	2647	lbs/A	*****	*****	****	****	****	****		
Magnesium	(Mg)	700	lbs/A	*****	*****	****	****	****	****	*	
Sulfur	(SO ₄ -S)		ppm								
Zinc	(Zn)		ppm								
Manganese	(Mn)		ppm								
Iron	(Fe)		ppm								
Copper	(Cu)		ppm								
Organic matte	r 3.0	%	Neutralia	zable acidity 0).5	meq/10	00g Catio	on Exch.	Capacity	10.3	meq/100g
PH in water			Electrica	al Conductivity		Mmho	cm Sodi	um (Na)			lbs/A
Nitrate (NO ₃ -N	l) Topsoil	ppm	Subso	il ppm	Samplin	g Depth	Тор		Inches	Subsoil	Inches
			NUTI	RIENT REQUIR	EMENTS					LIMESTO	NF
						Pou	inds per a	acre		SUGGEST	
	Cropping o	ptions		Yield goal	N	P ₂ O ₅	K ₂ O	Zn	S		0110
3 CLOVER/C					0 0		20			Effective Neutralizing	0
6 OVERSEED				0 0 100 20 Material (ENM)					U		
16 CLOVER/0	CL-GRASS	SHAY		2	T/A C	65	90			Effective magnesium	0
16 CLOVER/0	CL-GRASS	SHAY		3	T/A C	75	125			(EMg)	U

Comments

- ---No nitrogen fertilizer is recommended when establishing legumes because it promotes grass and weed competition.
- ---Some herbicide labels list restrictions based on soil pH in water. This sample has an estimated pH in water of 7.2. Use this estimated pH in water as a guide. If you wish to have soil pH in water analyzed, contact your dealer or Extension specialist listed below.

Soil Test Report

Soil Test Report

Soil Testing Laboratory 23 Mumford Hall, MU Columbia, MO 65211 Phone: (578) 882-0623 Soil Testing Laboratory P.O. Box 160 Portageville, MO 63873 Phone: (573) 379-5431

FIELD INFORMATION								
Fleid ID	Hil	I top f	field	Sampl	e no. 1			
Acres	40	Last Limed	Not	known	Irrigated No			
Last crop	019	9 Cool-	Seaso	n Gra	ss Pasture			
		Thi	s report i	a for:				

A

Serial no. M9	999	Lab no. 996999				
Area 015	County	010	Region 3			
Submitted		Processed				
06/10/9	96	06/12/96				

Soil sample submitted by:

Example Report University of Missouri Columbia, MO 65211

D							•	RATIN	KG .		
SOIL TEST INFORMATION				Very low	L	ow	Me	dium	High	Very High	Excess
pH _s	(salt pH)	4.9		******							
Phosphorus	(P)	22 1	bs/acre	******		****	+ +				
Potașsium	(K)	303	lbs/acre	******	****	*****	***	*****	**		
Calcium	(Ca)	2091	lbs/acr	e *******	****	****	***	***			-
Magnesium	(Mg)	278	1bs/ac	re ******	****	Ŷ	-		********	****	
Suttur	(SO ₄ -S)		p	pm .							
Zine	(Zn)		p	gm .							
Manganese	(Mn)	1	p	pm	HILL STATE				9.5		
Iron	(Fe)		P	pm							
Copper	(Cu)		p	pm		100		200			V-97-11
Organic metter		2.2	% Neutraliz	able acidity	6.0	meq/1	00g	Cation Exc	h. Cepecity	12.8	moq/100
pH in water			Electrica	Conductivity		mmho	/cm	Sodium (Na	s)		lbs/
Nitrate (NO ₃ -N)	Topsoil	PI	om Subsoil	ppm	Sampl	ing Depth	Te	op qo	Inches	Subsoil	inches
			NUTR	ENT REQUIREMEN	VTS				_	LIMESTON	E
	D F					Poun	ds per	r ecre	G	SUGGESTIC	
E	Cropping options		Yield goal	N	P ₂ O ₅	K	O Zn	S	SUGGESTIC	MO I	
Alfalfa/C	rass E	stabl	ishment	0	20	55		0		Effective neutralizing	. 20
Clover/Gr	ass Es	tabli.	shment	0	20	45		0		material (ENM)	1,39
Alfalfa/C	Frass H	ay		6	0	80	23	5		Effective magnesium	
Cool-Seas	on Gra	ss Pa	sture	150 CD/A	90	30	2	0	-0-20-0	(EMg)	

1

To determine limestone needs in tons/acre, divide ENM requirements by the quarantee of your limestone dealer.

When N requirement for cool-season grass exceeds 90 lbs/acre, apply 2/3 of it during the eriod from December through February, and the remainder in August.

Do not use nitrogen on spring seedlings of legumes after May 1st because of potential weed competition.

Area Agronomy Specialist Agronomy Specialist

White-Farmer, Yellow-ASCS, Blue-Firm, Pink-Extension

MP 189 Revised 1/96

Phone (573) 882-1000

Signature

(A) Field information

 This section contains information provided by you to identify the field and summarize previous management. This information includes, for example, the field name or number, field size and previous crop.

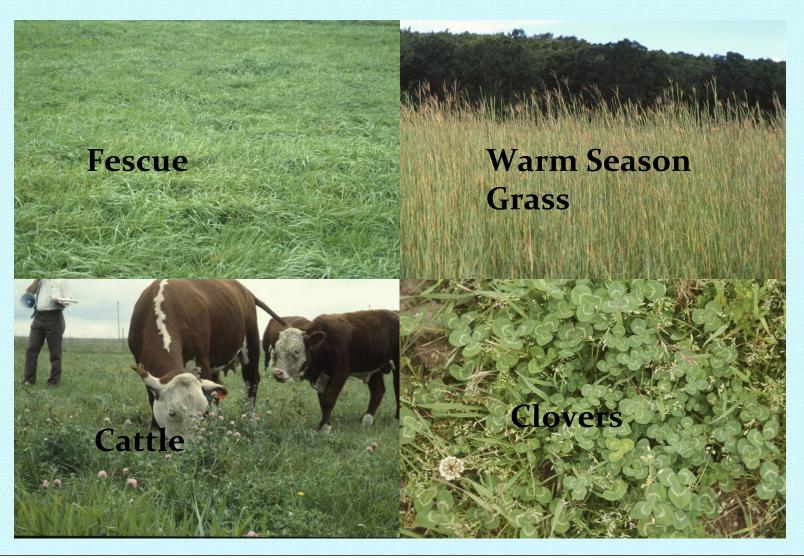
b) Jon test imolliation

- This provides the results of the soil tests performed on your sample.
- The regular soil tests include the soil salt pH; available phosphorus, potassium, calcium and magnesium; organic matter; neutralizable acidity; and cation exchange capacity.
- Tests for other nutrients can be obtained at additional charge.
- The basic set of tests provides the necessary data to develop nitrogen, phosphate, potash, and ag lime recommendations for your intended cropping plan.

c) Rating

- This section provides a rating for the salt pH and nutrients tested.
- The rating system helps you interpret the soil test information in Section B.
- The soil test rating indicates the relative level of each nutrient tested and provides information on the probability that application of a particular fertilizer will increase crop yield.
- Use Table 1 to determine the probability of a yield increase from fertilizer applications for your soil test rating.

Table 1


Your probability of yield increase from fertilizer drops as your soil test ratings in Section C rise.

Rating Very low	Low	Medium	High	Very high	Excess	Probability of response to fertilizer
****						very high
******	e					high
******	*****					medium
******	******	***				low
*******	******	*****				none
******	******	******	*****			none

(D) Nutrient requirements

- This section contains three parts:
 - cropping options,
 - yield goal, and
 - •fertilizer recommendations

Species Differ in their Nutrient Requirements

(E) Cropping options

- This section lists cropping plans or crops for requested fertilizer recommendations.
- You can request recommendations for up to four different cropping scenarios.
- Additional scenarios can be done at your local MU Extension center if you change plans after you receive your lab report.

(F) Yield goal

- The yield goal section shows the level of production you selected for the crops listed in Section E, "Cropping Options."
- Common yield goal ranges for Missouri crops are given in the appendix table in this publication.
- The yield goal you choose should be based on soil type, yield history, fertility level, irrigated versus nonirrigated land, and economic considerations.

(G) Pounds per acre

- Fertilizer recommendations for the crops and yield goals listed. The recommendations are reported as pounds of N (nitrogen), P_2O_5 (phosphate), and K_2O (potash) per acre.
- The fertilizer recommendation is designed to provide a recommendation of the nutrients needed to:
 - meet yield goal in Section F
 - improve soil fertility over time.
 - Following soil test recommendations will build or maintain soil test phosphorus and potassium to the high rating category if the recommended fertilizer rate is applied annually for eight years.
 - Micronutrient recommendations, for example zinc and sulfur, should be applied once and the soil resampled in three to five years to determine the need for additional applications.

(H) Limestone suggestions

• This section gives the suggested amount of limestone to raise soil salt pH to an optimal level for the cropping options listed. Desired soil salt pH ranges for Missouri crops are given in Table 2.

Desired soil salt pH (pH_s) ranges for Missouri crops

<u>Crop</u>	Soil region	
	Ozark and borders	Other
Alfalfa and alfalfa-grass establishment	6.6 to 7.0	6.1 to 6.5
Birdsfoot trefoil and birdsfoot trefoil-grass establishment	6.1 to 6.5	5.6 to 6.0
Clover and clover-grass establishment	6.1 to 6.5	5.6 to 6.0
Cool-season grass establishment and production	5.6 to 6.0	5.6 to 6.0
Lespedeza and lespedeza-grass establishment	6.1 to 6.5	5.6 to 6.0
Overseeding legumes	6.1 to 6.5	5.6 to 6.0
Warm-season grass establishment and production	5.6 to 6.0	5.6 to 6.0
Sudan grass and sudan/sorghum crosses	5.6 to 6.0	5.6 to 6.0
All row crops	6.1 to 6.5	6.1 to 6.5

Soil Regions

(H) Limestone suggestions

• The limestone recommendation is given for the cropping option requiring the highest salt pH range. For example, if a cool-season grass and alfalfa were both listed in Section E, the limestone recommendation would be for alfalfa since it requires a higher soil salt pH level. The recommendation is reported as pounds of ENM (effective neutralizing material) per acre.

(H) Limestone suggestions

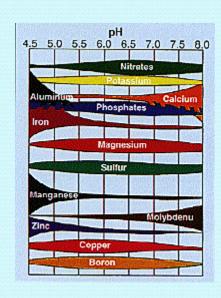
• To determine the amount of lime needed in tons per acre, divide the ENM value by the ENM guaranteed by your ag lime dealer. If the soil test ENM requirement is 1,395 pounds per acre and lime quarry guarantees 400 pounds ENM per ton of limestone, then you need 3.48 tons of limestone per acre (1,395 ÷ 400 = 3.48).

(I) Special notes

(II)
Many times notes appear at the bottom of the soil test report to help you interpret and use your results and recommendations.

Fertilization

- Soil Test
 - Lime
 - Raise pH 1 level= 2X available NPK
 - More Growth Prior to Dry Weather
 - Deeper roots, better uptake of water and nutrients
 - Favors legumes
 - Increases N from clovers/soybeans
 - Lowers N costs- Save \$\$\$
 - Improves Forage/Hay Quality and distribution
 - Winter survival



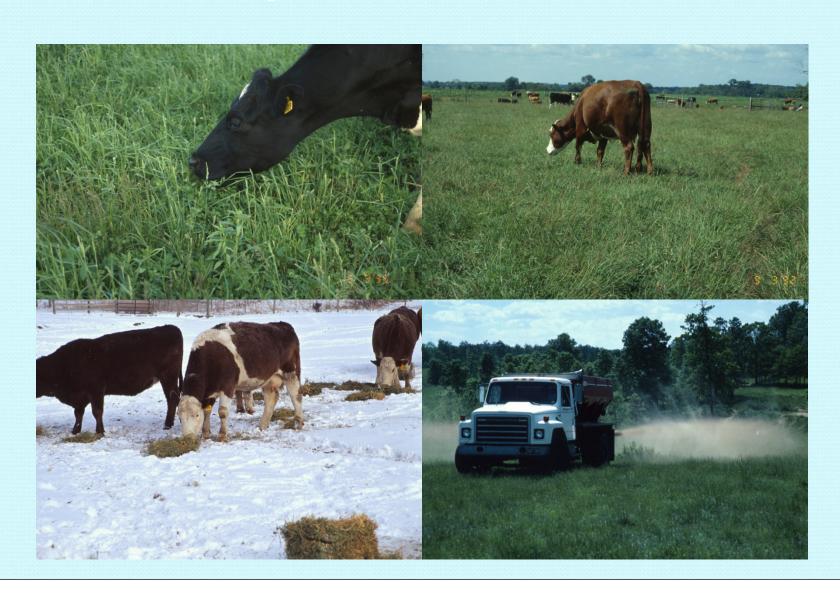
Soil pH – The Regulator

A measure of acidity or alkalinity

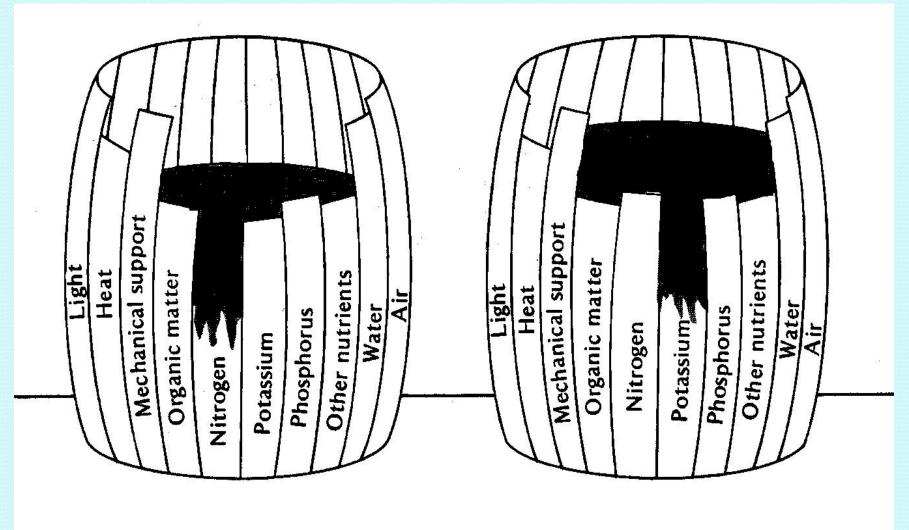
pH scale = 1-14 (7 = neutral)

Best growth & most efficient fertilizer use: 6.2-6.5

Low pH



- Reduced nutrient availability
 - Phosphorus
- Poor legume growth
 - Survival and activity of N fixing bacteria reduced
- Increased aluminum availability
 - Stunted root growth
 - Reduced nutrient uptake-Mg, Ca, P


Lime Makes Fertilizer Work Percent Nutrient Availability

рН	Nitrogen	Phosphorus	Potassium
pH (salt)	%	%	%
4.0	30	23	33
4.5	53	34	52
5.0	77	48	77
5.5	89	52	100
6.5	100	100	100

Fertility Needs are Complex Soil, Crops and Economics

Law of the Minimum

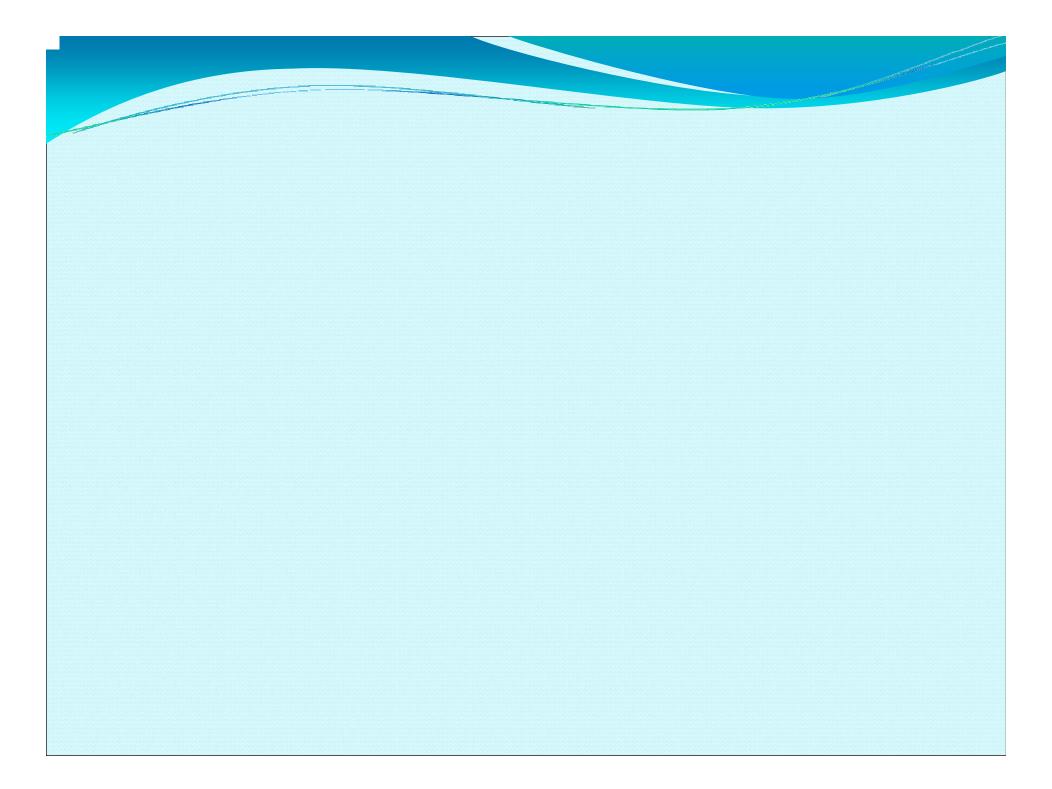
Fertilizer

- Nitrogen for Yield
 - 40# N = 1 ton forage
 - 1.0 to 1.2 #N per bushel corn or wheat
- Phosphorus for Healthier Stands/ Yields
 - Roots
 - Legumes
- Potash (K) for Persistance and Drought Resistance
 - Hay
 - Legumes and soybeans
- Apply only what is needed and saleable
- Avoid micros, wonder products
 - Boron-alfalfa, soybeans
 - Zinc- corn
 - Sulfur- wheat

Soil Test Reports

• Report is:

- -Good as your sample
- -Don't get sample from truck wheel well
- -Sample less than 20 Acres with 1 or more subsamples per Acre
- Recommendations are annually except for lime- apply one time only
- -Resample every 3-5 years


Summary

- Soil Test
 - Talk to spouse and banker
- Lime First
- Limiting Nutrient(s)
- Meet Crop Needs
- Healthy Stands
- Control Weeds
- Pray for Rain

Thank you

For additional information contact:

- Local Extension Office
 - Gerald Bryan
- Extension Agronomist
 - Jackson, MO
 - 573-243-3581

Minimum Soil Fertility

Species	pH(s)	P	K	
		- lb / acre -		
Cool-season grass	5.0	20	200	
Warm-season grass	5.0	20	200	
Alfalfa 6.5	40	300		
Red Clover	6.0	25	250	
White Clover	5.5	25	250	
Birdsfoot Trefoil	5.5	20	225	
Lespedeza	5.0	20	200	

pH Ranges for Successful Production

Fescue 4.7-6.8

Alfalfa 5.8-7.7

Red Clover 5.6-7.2

Lespedeza 5.0-6.6

laco Expense of a Low pH

3 Ton Cool Season Grass Hay Crop

pH (salt)	Fertilizer Wasted %	Required Fertilizer Bill
4.0	71	\$370
4.5	54	\$230
5.0	33	\$160
5.5	20	\$142
6.5	0	\$102

Pasture Fertility

- Fertilizer requirements for pastures are different than for cropping systems or even hay production
 - More than 90% of phosphorus (P) and potassium (K) are returned to the soil
 - About ½ of the nitrogen applied to pasture is returned...about ½ lost

If apply \$40 of N --\$20 returned to soil If apply \$40 of P&K--\$39 to soil

--Growing legume to supply N cheaper

Nutrient Removal for Pasture

Crop	N	P ₂ O ₅	K ₂ O
<u>-</u>	11	b / acro	e
Alfalfa hay (6 ton)	270*	90	270
Cool-season grass hay (3 ton)	150	40	145
Cow-calf pair	10	7	1